Neuro-fuzzy-combiner: an effective multiple classifier system
نویسندگان
چکیده
A neuro-fuzzy-combiner (NFC) is proposed to design an efficient multiple classifier system (MCS) with an aim to have an effective solution scheme for difficult classification problems. Although, a number of combiners exist in the literature, they do not provide consistently good performance on different datasets. In this scenario: 1 we propose an effective multiple classifier system (MCS) based on NFC that fuses the output of a set of fuzzy classifiers 2 conduct an extensive experimental analysis to justify the effectiveness of the proposed NFC. In the proposed technique, we used a neural network to combine the output of a set of fuzzy classifiers using the principles of neuro-fuzzy hybridisation. The neural combiner adaptively learns its parameters depending on the input data, and thus the output is robust. Superiority of the proposed combiner has been demonstrated experimentally on five standard datasets and two remote sensing images. It performed consistently better than the existing combiners over all the considered datasets.
منابع مشابه
A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملA Multiclassifier Approach to Motor Unit Potential Classification for EMG Signal Decomposition
EMG signal decomposition is the process of resolving a composite EMG signal into its constituent motor unit potential trains (classes) and it can be configured as a classification problem. An EMG signal detected by the tip of an inserted needle electrode is the superposition of the individual electrical contributions of the different motor units that are active, during a muscle contraction, and...
متن کاملBrain Tumor Classification using Adaptive Neuro-Fuzzy Inference System from MRI
Detecting correct type of brain tumor is a crucial task for diagnosis and curing the tumor. Identifying the correct type of brain tumor can provide a fast and effective way to plan the diagnosis of tumor. The proposed system provides a fast and efficient way to identify the correct type of tumor and classify it to the respective class label. Our proposed system is comprised of multiple stages. ...
متن کاملLearning hybrid neuro-fuzzy classifier models from data: to combine or not to combine?
To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, r...
متن کاملA Neuro-Fuzzy Classifier for Intrusion Detection Systems
Computer networks have experienced an explosive growth over the past few years and have become the targets for hackers and intruders. An intrusion detection system's main goal is to classify activities of a system into two major categories: normal activity and suspicious or intrusive activity. The objective of this paper is to expose ANFIS as a neuro-fuzzy classifier to detect intrusions in com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJKESDP
دوره 2 شماره
صفحات -
تاریخ انتشار 2010